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Problem 1.
A spin—% particle with spin in the direction specified by the spherical angles 6 and ¢ can be
represented by the normalized spinor
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Some useful properties of this spinor and of the spin matrices for spin % are given on the last

page of this exam.

(A) Suppose the spin component S, of the particle with spinor (6, ¢) is measured. What are
the possible results of the measurement? For each possible result, what is the probability of
obtaining that result and what is the normalized spinor after the measurement?
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(B) Verify explicitly that (i//\‘//—g) is an eigenvector of S, and determine its eigenvalue.
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(C) Suppose the spin component S, of the particle with spinor x(0, ¢) is measured. What are
the possible results of the measurement? For each possible result, what is the probability of
obtaining that result and what is the normalized spinor after the measurement? “d/s
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(D) Calculate the expectation value (S.)\ of the operator S, in the spinor (6. 0).
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(E) What measurement or set of measurements will

give a result that is approximately equal
to the expectation value in part (D)?

(F) In Dirac notation, the expectation value of S, in a normalized spinor x can be expressed as

(Sz)x = (x]S:|x)-

Prove that because S, is a hermitian o
|x) must be real.
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The magnetic moment of the spin—% particle is ji = (g()/‘_).m)g. Its wavepacket is localized near
z = 0 and moving along the r axis. Its initial spinor x (6. ¢) is given on page 1. The particle
passes through a Stern-Gerlach magnet that shifts its trajectory vertically by an amount =
proportional to the z compnent of its magnetic moment: z = Cu,. where (' is a constant.

(G) After the particle passes through the magnet, its = coordinate is measured by allowing it
to hit a collecting plate. If the vertical position is observed to be z. what measured values of
p. and S, can be inferred from the measurement of =?
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(H) Suppose 1000 particles with initial spinor X (0, &) pass through the Stern-Gerlach magnet
and strike the collecting plate. What are all the values of S, that will be observed? For each
value of S., what is the expected number of particles with that value?
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The collecting plate is now replaced by an absorber that blocks a particle whose trajectory is
shifted downward (because S is negative) but allows a particle whose trajectory is shifted
upward to be transmitted.

(I) If the initial spinor of the particle entering the Stern-Gerlach magnet is x(6, ¢), what is the
probability that it will be transmitted past the absorber? If it is transmitted, what will the
normalized spinor for the transmitted particle be?
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Problem 2.
The Schroedinger equation in spherical coordinates for an clectron with energy E, that is
bound in a hydrogen atom can be expressed in the form
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where K = ¢?/(4rey) and L,, Ly, and L, are angular differential operators.

(A) The spherical harmonic Yem (0, ©) has subscripts ¢ and m that specifv the eigenvalues of
the differential operators L2 + L“ + L? and L,. What are their eigenvalues? What are the
possible values of the quantum numbexs ¢ and m?
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(B) Suppose the wave function has the form Y(r,8,¢) = R(r)Yen (8, ¢), where Yy, is a spherical
harmonic. Reduce the Schroedmger equation above to a differential equation for R(r).
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For some choices of the quantum numbers ¢ and m, the radial Schroedinger equation reduces to

2 2
[ h (d) —}?(JrRzEnrR.
-

(C) At large r, there are two approximate solutions for 7R(r) that can be expressed in the
form exp(—r/a) and exp(+r/a). Deduce the value of the positive variable a. Why is the
approximate solution exp(+r/ay unphysical?
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An exact solution to the simple differential equation above part (C') can be expressed as the
approximate solution multiplied by a power series in r:

) = (Z(*jrj) exp(—r/a).
J=0

The differential equation can then be reduced to
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(D) Deduce a recursion relation for the coefficients ¢ i
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(E) Verify that an approximate solution to the recursion relation for large j is

161
c;r == .
TR

Z 4 Zmk. 2 . 2wk

a ¢ 7 . 242 a2
G~ L G R T G
4 (417 7 4*) d

gt _ .
= i 71(3)° = gor (2)° 7= S,

(F) The corresponding approximate solution to the differential equation at large r is
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TR(r) ~ LZ:OF (;) J exp(—r/a).

Why is such a solution unphysical?
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(G) Use the recursion relation obtained in part (D) to deduce the quantlzatlon condition that
determines the energy eigenvalues E,,. (The ﬁnal answer E, = —Ry/n” can be obtained by
combining this result with that of part (C), but you do NOT need to do this. )
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Problem 3.
The components .J,. Jy. and J; of an angular momentum vector J are hermitian operators

that satisfy the angular momentum algebra. The operator J? = J2 + J2 + J? commutes with
each component of J.

(A) The raising and lowering operators for .J, are Jy = J, £1iJ,. Use the angular momentum
algebra to derive the commutation relation
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(B) Suppose |¢) is an eigenstate of J, with eigenvalue mh. Use the commutator in part (A) to
derive a simpler expression for J.J_|y). What are its implications for the state J_[@)?
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(C) Use the angular momentum algebra to derive the equation
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(D) Let |j,m) be a simultaneous eigenstate of .J2 and .J, with eigenvalues j(j + 1)A? and mh,
respectively. The state |7, m) is normalized:
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Use the identity in part (C) to determine the normalization of the state J_|j, m).
| il = (L) TGy = Lgoml T3 T
= {am| T =T +kTz]gm)
— Lyl (45108 = (mb)2e kom0 L
= [31 [541) = mrstm | K™ LG gy = [ 4lg*1)—m+ m |k

3 e o iy i (GGt



The Hamiltonian for the I-dimensional harmonic oscillator can be expressed in the form
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(E) Use the commutation relation X, PJ
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(F) Use the commutation relation [4, A" = 1 to show that A is
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a lowering operator for the
Hamiltonian:
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(G) Suppose [n) is an eigenvector of the Hamiltoni

an with eigenvalue FE,,. Use the commutator
in part (F) to derive a simpler expression for & A[n) What are its implications for the state
Ajn)?

HA = AH= -t A HA = AH koA
HA[RY = AHIR = AwAln = A (Ealry)=twAln = (E-kW) Alny

o1 AN o igengedlin %HMW E —Fu

(H) Suppose the state |v) satisfies Aly) = 0. Express this condition

as a differential equation
for the wavefunction y(z) associated with the state )
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Spin matrices and spinors for spin
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Commutation relations:

Spin matrices:

[Se. Sy) = iRS., [S,.8.] = ikS,. [S.,S,] =S,

Square of the spin vector:
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Raising and lowering operators for S.: Sy =8, %18,
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Normalized eigenvectors of S,:
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Normalized eigenvectors of Syt
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Normalized eigenvectors of S, :

Spinor with spin in the direction 0, ¢):
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