Physics 5500 1st Midterm Exam 20]3 NAME

33 Problem 1.

The classical model for the hydrogen atom is an electron orbiting the proton like a planet
around the sun. The energy E of a circular orbit with radius 7 and velocity v is
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Newton’s equations have been used to eliminate r or v in the last two expressions.

5 (A) Use the expressions for the energy to express the velocity v of the circular orbit in terms of
its radius 7. What is the period T of a circular orbit with radius r?
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2 (B) According to Maxwell’s Equations, what is.the frequency of electromagnetic radiation
emitted by an electron in a circular orbit with radius 77
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Suppose the energy of the electron in a circular orbit can only have the discrete values
E, = —Ry/n? where n is a positive integer.

L—f (C) A photon is emitted when an electron makes the transition from the n = 5 level to the
n = 3 level. Express the frequency of the photon in terms of Ry.
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L/- (D) Use the assumption that E,, = —Ry/n? to express the discrete values of the radius r, the
velocity v, and the angular momentum L = meur in terms of Ry.
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Bohr’s expression for the Rydberg constant Ry in terms of fundamental constants is
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(E) This expression can be deduced by assuming that the angular momentum L, has
particularly simple discrete values. What are those discrete values?
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(F) Bohr’s expression for the Rydberg constant can also be deduced by setting the classical
frequency of electromagnetic radiation in part (B) equal to the frequency of the photon
emitted in some transition between energy levels of the electron. What is the transition?
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L7£ (G) The electron makes a transition from the

N + 2 level to the N level, where N is a very
large integer. Express the change in the electr
power of N. (The binomial expansion is (

on energy in a simple form proportional to a

1+€)P =1+ pe+ ... for small ¢.)
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(H) Balmer’s empirical formula for the wavelengths A, in the visible s
atom was

pectrum of the hydrogen
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What transitions between electron energy levels must be responsible for the visible
wavelengths?
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(I) What is the energy of a photon with wavelength A,? Use this to express Balmer’s constant
A in part (H) in terms of Ry.
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% H Problem 2.
A particle moving to the right with positive energy F scatters from a step potential V(z) that
changes from 0 for z < 0 to a lower energy —V for > 0.

The scattering probabilities can be determined from a solution ¥(z,t) to the Schroedinger
equation that is normalized: JIX dz | W(z, )2 = 1.

3 (A) At an initial time ¢ = 0, when the particle is stil] approaching the step, the wavefunction
¥(z,0) is a wave packet. Sketch Re¥(z,0) as a function of z, indicating the position of the
step. Draw an arrow indicating the direction the wave packet is moving.

% (B) At a later time ¢ = T, after the particle has scattered from the step, the wavefunction
¥(z,T) is the sum of two wave packets. Sketch Re®(z, T) as a function of z. Draw arrows
indicating the directions the two wave packets are moving.
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3 (C) Suppose the position of the particle is measured at time 7' whenlkhe wavefunction has the
form sketched in[part (B). Indicate a possible result To of the measufpment on the z axis.
Sketch the waveffinction immediately after the measurement. Was tli¢ particle reflected at the
step or was it trg@nsmitted? J
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3 (D) The wavefunction at time T before any measurement can be expressed as
(2, T) = e () + Yrigns (),

where Yiert () is nonzero only far to the left of the step and ¥yigne () is nonzero only.far to the
right of the step. What is the probability R that a measurement of the position at time T

reveals that the particle was reflected?
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The scattering probabilities can also be determined from a solution Y(z) to the
time-independent Schroedinger equation with energy E.

3 (E) The most general solution for () in the region z > 0 has the form
¢(l) 2 Ceikgx + De—ikzx’

where C' and D are arbitrary coefficients. Derive the expression for ky?
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E (F) Write down the most general solution for ¥(z) in the region z < 0, with the only
unknowns heing arbitrary coefficients4-and-B- ﬁ
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(G) What constraints on the coefficients A, B, C, and D are imposed by the requirement that

the wavefunction describes the scattering of a particle that approaches the step from the left?
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L7L (H) What constraints on the coefficients are imposed by the requirement that the solutions
match at £ = 0?7 Express them as linear equations in A, B, C, and D.
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% (I) Sketch the real parts of the wavefunctions as functions of z for the incident, transmitted,
and reflected waves. Label them “incident”, “reflected”, and “transmitted” .

g (J) For each of the three waves, identify the speed and the direction with which its probability
is flowing.
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g (K) Express the probability T for the particle to be transmitted at the step in terms of A, B,
C, D, and other parameters in the wavefunctions in parts (E) and (F).
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Problem 3.

A particle F is bound in a square-well potential V() that is 0 in the regions —oo < r < —q
and +a < z < +00 and has a negative value =W for —a < z < +q, The particle has a
negative energy E in the range —Vp < F < 0.

The bound state can be described by a solution ¥(x) to the time-independent Schroedinger
equation with energy E.

(A) The most general solution for ¥(z) in the region —q < 2 < +ais
w(x) — Creilcz s De—ikz,

where k = \/2m(V}, + E)/h and C and D are arbitrary coefficients. Write down the most

general solution ¥(z) in the region +a < r < +o0, with the only unknowns being arbitrary
coefficients F and (3 .
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(B) What constraints on the coefficients C, D, F, and G are imposed by the condition that
¥(z) be normalizable?
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(C) The equations on all the arbitrary coefficients that are imposed by the condition that the
solutions match at £ = +q and at £ = —q can be reduced to 4 linear equations in 4 unknowns.
However the fact that the potential V(z) is an even function of z can be exploited to reduce
the problem to 2 equations in 2 unknowns for even wavefunctions and 2 equations in 2
unknowns for odd wavefunctions. The equations for even wavefunctions are

e ™A = 2cos(ka)C,
ke "*A = 2ksin(ka)C,

where k and x are known functions of the energy E. What single equation must be satisfied by
the energy E in order for it to be the energy of a bound state?
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Lf (D) Assume that there are at least 2 bound-state energy levels. Sketch the wavefunctions
¥1(z) and ¥y(z) for the ground state and the first excited state. Mark the positions —a and
+a on the z axis and label the wavefunctions “n = 17 and “p = 2",
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would inform you that the particle had made a transition from the excited state n — 2 to the
ground state n = 1?

me t = 0, the particle will definitely be in the

3 (F) If the photon in part (F) is observed at ti
n 9 (z). What is its Schroedinger wavefunction

ground state with energy E; and wavefunctio
U(z,t) at later times ¢?
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0. Suppose its energy F is measured at a

3 (G) The particle is in the ground state at time ¢ —
and what is the probability for each value?

later time ¢t = T. What are the possible values of F
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(H) Suppose you are given a wavefunction ¥(x) for the particle that is NOT normalized. What
is the probability distribution P(z)dx for a measurement of its position x?
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5 (I) Suppose the wavefunction ¢ (z

) for the particle is normaliz
value (z) of the position as an int

egral over .
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?7 (J) For which of the following 1000 measurements of the position will the average of the
measurements be close to (r)?

ed. Express the expectation

1. measurements on the same State
subsequent times

@easurements on 1000 different states that all have the Same initial wavefunctio
3. both 1. and 2.

whose initial wavefunction is ¥(z) at a sequence of 1000

n i(z)




	001
	002
	003
	004
	005
	006
	007
	008

