Physics 5500 1st Midterm Exam 2012 NAME

Problem 1.

Many of the classic experiments that motivated the development of quantun mechanics
provided evidence that light consists of particles. Three of the phenomena that were the
subjects of these experiments were

° l)lack—bodry radiation, Q

L
e Compton effect, A

e photoelectric effect.

(A) For each of these phenomena, which one or more of the following statements is the most
appropriate inference from the experiments? Write the appropriate number or numbers after
each of the phenomena listed above.

1. Matter absorbs light of frequency v as if the light consists of particles with energy hu.
2. Matter emits light of frequency v as if the light consists of particles with energy hu.

3. Light of frequency v scatters from matter as if the light consists of particles with energy
hv and momentum hv/c. '

4. Matter absorbs light of frequency v as if the light consists of particles with momentum
hv/c.

5. Matter emits light of frequency v as if the light consists of particles with momentum
hv/e.

Consider the collision of an X-ray photon with wavelength A and an electron at rest.
Suppose the X-ray photon back-scatters from the electron (its scattering angle is 180°). The
back-scattered photon has wavelength \" and the recoiling electron has momentum p'.

(B) Write down the equation for conservation of energy in the collision. (It should be
expressed in terms of A, ', p/, and physical constants. )
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If ultraviolet light shines on a metal, electrons can be ejected from the metal. The escaped
clectrons are called photo-clectrons. The conduction electrons inside the metal have a constant
negative potential energy —U and kinetic energies that range from 0 to a maximum Er that is
called the Fermi energy. (As an aside, in the case of copper, U &~ 12 eV and Ep ~ 7 eV.)

(D) Suppose an electron inside the metal with kinetic energy E absorbs a photon of frequency
v. What is its kinetic energy E’ while it is still inside the metal? What is its total energy’
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(E) Suppose the energy £’ of that electron is large enough that it can escape from the metal.
What is the kinetic energy E” of the photo-electron? What is its maximum possible kinetic
energy?
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(F) What is the minimum frequency of light required for it to eject a photo-electron from the
metal. (It should be expressed in terms of I/ » Ep, and physical constants.)
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Problem 2.
A particle is bound in a 1-dimensional square-well potential that is 0 in the r

and has a positive value V) for & < 0 and » > a. The energy F of tl
0< E <V

egion 0 < & < q
1e particle is in the ranee
I g

(A) Write down the most general solution of the Schroedinge
region 0 < < a. (Define any symbols vou introduce.)
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(B) Write down the most general solution of the Schroe
region r > qa.
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dinger equation for energy E in the

(C) The probability density cannot diverge as  — +oo.

What constraint does this put on the
wavefunction in the region x > a?
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(D) Write down (but don't solve)
(They should be expressed as line
Schroedinger equation.)
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the matching conditions for the wavefunction at z = q.
ar equations for coefficients in the general solutions to the



If the walls of the potential well are nfinitely high (V) — ~). the energy cigenvalues and the

normalized wavefunctions are simple:
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(E) Suppose the energy of the particle is measured at time 0 to be 27°h% /ma?. What is the
wavefunction ¢(x) immediately after the measurement? What is the wavefunction W(x,t) at a

later time #?
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(F) Suppose the particle in the n = 3 energy level makes a transition to the n = 1 energy level

by emitting a photon. What is the frequency of the photon?
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(G) Suppose the particle is in the n — 5 energy level and its position z is measured. What are
the possible values of = and what is their probability distribution? Express the condition that

the total probability is 1 in terms of an integral over . -
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N of particles are all in the n = 5 energy level and measurements

xy. The average position is ¥ = (ry+29+ ...+ xn)/N. As
at should you expect 7 to converge to? (Express it as an

(H) Suppose a large number
of their positions give z;, o, ...
N becomes larger and larger, wh
integral over )
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Problem 3.
Consider the scattering of a particle in 1 dimension from a step potential that changes from 0
for v < 0to Vj for & > 0.

(A) Suppose a particle has energy £ that is larger than V). What is its quantum wavelength in
the region r < 07 What is its quantum wavelength in the region » > (?
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The scattering probabilities for a particle of energy E can be determined from the solution of

the time-independent Schroedinger equation for the wave function v ().

(B) Write down the most general solution to the Schroedinger equation for energy £ in the
region x < 0. (Define any symbols you introduce.)
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(C) Write down the most general solution to the Schroedinger equation for energy E in the
region x > 0. B
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Now consider the specific problem of a particle that comes from the left and scatters from the
step potential.

(D) Identify the terms in the wavefunctions in parts B and C that correspond to incident,
reflected and transmitted waves.
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(E) Write down (but don’t solve) the matching conditions for the wavefunction at - — 0.
(They should be expressed as linear equations for coefficients in the general solutions to the
Schroedinger equation. )
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(F) For the specific energy %Y 0. the wavelength for & > 0 is twice the wavelength for & < 0.
Sketch the real parts of the wavefunctions for the incident, reflected and transmitted waves as
functions of x. (The amplitudes and phases of the waves do not need to be drawn accurately,
but their relative wavelengths should be.)
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The reflection and transmission probabilities for a particle of energy E are
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They satisfy R+ T = 1. (These equations for R and T are intended only to make the problem
more concrete. You will not need to use them.)

(G) Express the probabilities R and T in terms of the amplitudes of the incident, reflected,
and transmitted waves in parts B and C.
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The scattering of a particle is actually described by a solution U(x, t) to the time-dependent

NN
Schroedinger equation. The wavefunction is a wavepacket consisting of waves with a narrow
distribution of momenta that is sharply peaked near 2mE.

(H) For the specific energy %Vo (see part F), sketch the real part of the wavefunction U(x,t) at
a time t when the particle is still approaching the step.
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(I) For the specific energy é—VO sketch the real part of the wavefunction U(w,t) at a time ¢ well
after the particle has scattered from the step.




Suppose detectors are set up to observe the scattered particles: a LEFT detector far to the left
to observe particles that are reflected and a RIGHT detector far to the right to observe
particles that are transmitted.

(J) If a single particle with mass m and kinetic energy F is scattered from the step potential,
which of the following statements describes what would be observed in the two detectors?
Circle the numbers for each of the correct statements.

mA particle will be observed either at the LEFT detector or at the RIGHT detector but
" uot at both.

2. A particle will be observed at both the LEFT detector and the RIGHT detector.

(;D\ particle will be observed at the LEFT detector with probability R and at the RIGHT
“detector with probability T.

4. A particle with energy RE will be observed at the LEFT detector and a particle with
energy TE will be observed at the RIGHT detector.

5. A particle with mass Rm will be observed in the LEFT detector and a particle with
mass T'm will be observed in the RIGHT detector.

(K) Suppose a beam consisting of 1000 particles of mass m and kinetic energy E is scattered
from the step potential. Approximately how many particles would be observed at the LEFT
detector and how many at the RIGHT detector?
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