Schwartz Chapter 14: Problems 1*, 2abcd, 3

Problem 14.1* (modified)

(This problem is stated incorrectly in previous versions of Schwartz.)
Derive the following functional integral over a complex scalar field:

$$
\begin{array}{r}
\int \mathcal{D} \phi^{*} \mathcal{D} \phi \exp \left(i \int d^{4} x \int d^{4} y \phi^{*}(x) M(x, y) \phi(y)+i \int d^{4} x\left(J^{*}(x) \phi(x)+\phi^{*}(x) J(x)\right)\right) \\
=\mathcal{N} \frac{1}{\operatorname{det} M} \exp \left(-i \int d^{4} x \int d^{4} y J^{*}(x) M^{-1}(x, y) J(y)\right),
\end{array}
$$

where the integral transform kernel M is hermitian $\left(M(x, y)^{*}=M(y, x)\right), J(x)$ is a classical complex source, and \mathcal{N} is an infinite constant.

Problem 14.3 (hints)

(a) Show that the annihilation operator can be expressed as

$$
a_{\vec{p}}=\frac{1}{\sqrt{2 \omega_{p}}} \int d^{3} x e^{-i \vec{p} \cdot \vec{x}}\left[\omega_{p} \hat{\phi}(\vec{x})+i \hat{\pi}(\vec{x})\right]
$$

where $\hat{\phi}(\vec{x})=\hat{\phi}(\vec{x}, t=0)$ and $\hat{\pi}(\vec{x})=\partial_{t} \hat{\phi}(\vec{x}, t=0)$.
(b) Show that $\hat{\pi}(\vec{x})$ acts on eigenstates of $\hat{\phi}$ as the variational derivative $-i \delta / \delta \phi(\vec{x})$ by using the commutation relation

$$
\left[\hat{\phi}(\vec{x}), \hat{\pi}\left(\vec{x}^{\prime}\right)\right]=i \delta\left(\vec{x}-\vec{x}^{\prime}\right) .
$$

(e) To evaluate the integral Eq. (14.66), first go to spherical ccoordinates with the exponential expressed in the form $\exp (i p r \cos \theta)$. After integrating over θ, you will have an integral of the form

$$
\int_{0}^{\infty} d p p \sqrt{p^{2}+m^{2}}[\exp (i p r)-\exp (-i p r)] .
$$

You can express this as an integral over the entire real p axis, with only the first exponential in the integrand. You can add to the contour a semicircle at infinity in the upper half plane, and then deform the contour to wrap around the branch cut that runs along the vertical axis from $+i m$ to $+i \infty$. You can express this as an integral over y from m to ∞ that Mathematica can evaluate in terms of BesselK [2, m r]. If you take the $m \rightarrow 0$ limit, you should get a function that is a simple power of r.

